An Asymptotically Correct Finite Path Semantics for LTL

نویسندگان

  • Andreas Morgenstern
  • Manuel Gesell
  • Klaus Schneider
چکیده

Runtime verification of temporal logic properties requires a definition of the truth value of these properties on the finite paths that are observed at runtime. However, while the semantics of temporal logic on infinite paths has been precisely defined, there is not yet an agreement on the definition of the semantics on finite paths. Recently, it has been observed that the accuracy of runtime verification can be improved by a 4-valued semantics of temporal logic on finite paths. However, as we argue in this paper, even a 4-valued semantics is not sufficient to achieve a semantics on finite paths that converges to the semantics on infinite paths. To overcome this deficiency, we consider in this paper Manna and Pnueli’s temporal logic hierarchy consisting of safety, liveness (guarantee), co-Büchi (persistence), and Büchi (recurrence) properties. We propose the use of specialized semantics for each of these subclasses to improve the accuracy of runtime verification. In particular, we prove that our new semantics converges to the infinite path semantics which is an important property that has not been achieved by previous approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LTL Goal Specifications Revisited

The language of linear temporal logic (LTL) has been proposed as a formalism for specifying temporally extended goals and search control constraints in planning. However, the semantics of LTL is defined wrt. infinite state sequences, while a finite plan generates only a finite trace. This necessitates the use of a finite trace semantics for LTL. A common approach is to evaluate LTL formulae on ...

متن کامل

Runtime verification revisited

In this paper, we address a typical obstacle in runtime verification of linear temporal logic (LTL) formulae: standard models of linear temporal logic are infinite traces, whereas run-time verification has to deal with only finite system behaviours. This problem is usually addressed by defining an LTL semantics for finite traces, which, however, does usually not fit well to the infinite trace s...

متن کامل

Quantales and Temporal Logics

We propose an algebraic semantics for the temporal logic CTL∗ and simplify it for its sublogics CTL and LTL. We abstractly represent state and path formulas over transition systems in Boolean left quantales. These are complete lattices with a multiplication that preserves arbitrary joins in its left argument and is isotone in its right argument. Over these quantales, the semantics of CTL∗ formu...

متن کامل

The Common Fragment of ACTL and LTL

The paper explores the relationship between tree languages definable in LTL, CTL, and ACTL, the fragment of CTL where only universal path quantification is allowed. The common fragment of LTL and ACTL is shown to be strictly smaller than the common fragment of LTL and CTL. Furthermore, an algorithm is presented for deciding if an LTL formula can be expressed in ACTL. This algorithm uses an effe...

متن کامل

Comparing LTL Semantics for Runtime Verification

When monitoring a system wrt. a property defined in a temporal logic such as LTL, a major concern is to settle with an adequate interpretation of observable system events; that is, models of temporal logic formulae are usually infinite words of events, whereas at runtime only finite but incrementally expanding prefixes are available. In this work, we review LTL-derived logics for finite traces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012